Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.276
Filtrar
1.
Cells ; 10(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571926

RESUMO

T-type Ca2+ channels, generating low threshold calcium influx in neurons, play a crucial role in the function of neuronal networks and their plasticity. To further investigate their role in the complex field of research in plasticity of neurons on a molecular level, this study aimed to analyse the impact of the vascular endothelial growth factor (VEGF) on these channels. VEGF, known as a player in vasculogenesis, also shows potent influence in the central nervous system, where it elicits neuronal growth. To investigate the influence of VEGF on the three T-type Ca2+ channel isoforms, Cav3.1 (encoded by Cacna1g), Cav3.2 (encoded by Cacna1h), and Cav3.3 (encoded by Cacna1i), lasermicrodissection of in vivo-grown Purkinje cells (PCs) was performed, gene expression was analysed via qPCR and compared to in vitro-grown PCs. We investigated the VEGF receptor composition of in vivo- and in vitro-grown PCs and underlined the importance of VEGF receptor 2 for PCs. Furthermore, we performed immunostaining of T-type Ca2+ channels with in vivo- and in vitro-grown PCs and showed the distribution of T-type Ca2+ channel expression during PC development. Overall, our findings provide the first evidence that the mRNA expression of Cav3.1, Cav3.2, and Cav3.3 increases due to VEGF stimulation, which indicates an impact of VEGF on neuronal plasticity.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Cálcio/metabolismo , Cerebelo/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células de Purkinje/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo T/genética , Cerebelo/efeitos dos fármacos , Feminino , Masculino , Plasticidade Neuronal , Células de Purkinje/citologia , Células de Purkinje/efeitos dos fármacos , Ratos Wistar
2.
Neurotoxicology ; 87: 120-127, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508789

RESUMO

Carbon black (CB) has been demonstrated to have adverse effects on the lung tissue. Few studies explored the effects of CB on the cerebellum, widely recognized to contribute to gait and balance coordination and timing in the motor domain. Some studies have reported that inflammatory response and damaged autophagy are important mechanisms of CB toxicity and can be repaired after the recovery. The present study aimed to determine whether long-term CB exposure could induce the inflammation and damaged autophagy of the cerebellum. The rats were randomly divided into four groups. The control group received the filtered air for 90 days; the carbon black (CB) group received CB particles for 90 days; the recovery (R) group received CB for 90 days and recovered for another 14 days; the recovery control (RC) group received filtered air for 104 days. The purpose of the R group was to test whether neuroinflammation and autophagy could be repaired after short-term recovery. The western blot and immunohistochemistry revealed that long-term CB exposure induced augmented level of pro-inflammatory cytokines (Interleukin-1ß, IL-1ß; Interleukin-6, IL-6; and Tumor Necrosis Factor-α, TNF-α) and anti-inflammatory cytokine (Interleukin-10, IL-10). The autophagic markers (Beclin1 and LC3) were increased in both CB group and R group. These findings clearly demonstrated that long-term CB exposure induced inflammation and autophagy in the cerebellum, which were not obviously improved after short-term recovery.


Assuntos
Autofagia/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Doenças Neuroinflamatórias/induzido quimicamente , Fuligem/toxicidade , Animais , Western Blotting , Cerebelo/patologia , Masculino , Doenças Neuroinflamatórias/patologia , Ratos , Ratos Sprague-Dawley , Fuligem/administração & dosagem
3.
Neurobiol Dis ; 159: 105509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537326

RESUMO

Multiple System Atrophy (MSA) is a rare neurodegenerative synucleinopathy which leads to severe disability followed by death within 6-9 years of symptom onset. There is compelling evidence suggesting that biological trace metals like iron and copper play an important role in synucleinopathies like Parkinson's disease and removing excess brain iron using chelators could slow down the disease progression. In human MSA, there is evidence of increased iron in affected brain regions, but role of iron and therapeutic efficacy of iron-lowering drugs in pre-clinical models of MSA have not been studied. We studied age-related changes in iron metabolism in different brain regions of the PLP-αsyn mice and tested whether iron-lowering drugs could alleviate disease phenotype in aged PLP-αsyn mice. Iron content, iron-ferritin association, ferritin protein levels and copper-ceruloplasmin association were measured in prefrontal cortex, putamen, substantia nigra and cerebellum of 3, 8, and 20-month-old PLP-αsyn and age-matched non-transgenic mice. Moreover, 12-month-old PLP-αsyn mice were administered deferiprone or ceruloplasmin or vehicle for 2 months. At the end of treatment period, motor testing and stereological analyses were performed. We found iron accumulation and perturbed iron-ferritin interaction in substantia nigra, putamen and cerebellum of aged PLP-αsyn mice. Furthermore, we found significant reduction in ceruloplasmin-bound copper in substantia nigra and cerebellum of the PLP-αsyn mice. Both deferiprone and ceruloplasmin prevented decline in motor performance in aged PLP-αsyn mice and were associated with higher neuronal survival and reduced density of α-synuclein aggregates in substantia nigra. This is the first study to report brain iron accumulation in a mouse model of MSA. Our results indicate that elevated iron in MSA mice may result from ceruloplasmin dysfunction and provide evidence that targeting iron in MSA could be a viable therapeutic option.


Assuntos
Encéfalo/efeitos dos fármacos , Ferro/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Ceruloplasmina/farmacologia , Cobre/metabolismo , Deferiprona/farmacologia , Modelos Animais de Doenças , Ferritinas/efeitos dos fármacos , Ferritinas/metabolismo , Quelantes de Ferro/farmacologia , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Putamen/efeitos dos fármacos , Putamen/metabolismo , Putamen/patologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética
4.
Exp Neurol ; 343: 113791, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157318

RESUMO

Spinocerebellar ataxia (SCA) is a group of autosomal-dominantly inherited ataxia and is classified into SCA1-48 by the difference of causal genes. Several SCA-causing proteins commonly impair dendritic development in primary cultured Purkinje cells (PCs). We assume that primary cultured PCs expressing SCA-causing proteins are available as in vitro SCA models and that chemicals that improve the impaired dendritic development would be effective for various SCAs. We have recently revealed that D-cysteine enhances the dendritic growth of primary cultured PCs via hydrogen sulfide production. In the present study, we first investigated whether D-cysteine is effective for in vitro SCA models. We expressed SCA1-, SCA3-, and SCA21-causing mutant proteins to primary cultured PCs using adeno-associated viral serotype 9 (AAV9) vectors. D-Cysteine (0.2 mM) significantly ameliorated the impaired dendritic development commonly observed in primary cultured PCs expressing these three SCA-causing proteins. Next, we investigated the therapeutic effect of long-term treatment with D-cysteine on an in vivo SCA model. SCA1 model mice were established by the cerebellar injection of AAV9 vectors, which express SCA1-causing mutant ataxin-1, to ICR mice. Long-term treatment with D-cysteine (100 mg/kg/day) significantly inhibited the progression of motor dysfunction in SCA1 model mice. Immunostaining experiments revealed that D-cysteine prevented the reduction of mGluR1 and glial activation at the early stage after the onset of motor dysfunction in SCA1 model mice. These findings strongly suggest that D-cysteine has therapeutic potential against in vitro and in vivo SCA models and may be a novel therapeutic agent for various SCAs.


Assuntos
Ataxina-1/biossíntese , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cisteína/uso terapêutico , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/metabolismo , Animais , Ataxina-1/genética , Células Cultivadas , Cisteína/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Gravidez , Ratos , Ratos Wistar , Ataxias Espinocerebelares/genética
5.
Neurobiol Dis ; 156: 105422, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34126164

RESUMO

Synthetic glucocorticoids (sGCs) such as dexamethasone (DEX), while used to mitigate inflammation and disease progression in premature infants with severe bronchopulmonary dysplasia (BPD), are also associated with significant adverse neurologic effects such as reductions in myelination and abnormalities in neuroanatomical development. Ciclesonide (CIC) is a sGC prodrug approved for asthma treatment that exhibits limited systemic side effects. Carboxylesterases enriched in the lower airways convert CIC to the glucocorticoid receptor (GR) agonist des-CIC. We therefore examined whether CIC would likewise activate GR in neonatal lung but have limited adverse extra-pulmonary effects, particularly in the developing brain. Neonatal rats were administered subcutaneous injections of CIC, DEX or vehicle from postnatal days 1-5 (PND1-PND5). Systemic effects linked to DEX exposure, including reduced body and brain weight, were not observed in CIC treated neonates. Furthermore, CIC did not trigger the long-lasting reduction in myelin basic protein expression in the cerebral cortex nor cerebellar size caused by neonatal DEX exposure. Conversely, DEX and CIC were both effective at inducing the expression of select GR target genes in neonatal lung, including those implicated in lung-protective and anti-inflammatory effects. Thus, CIC is a promising, novel candidate drug to treat or prevent BPD in neonates given its activation of GR in neonatal lung and limited adverse neurodevelopmental effects. Furthermore, since sGCs such as DEX administered to pregnant women in pre-term labor can adversely affect fetal brain development, the neurological-sparing properties of CIC, make it an attractive alternative for DEX to treat pregnant women severely ill with respiratory illness, such as with asthma exacerbations or COVID-19 infections.


Assuntos
Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Glucocorticoides , Pulmão/efeitos dos fármacos , Pregnenodionas/farmacologia , Pró-Fármacos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Dexametasona/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/biossíntese , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
6.
J Chem Neuroanat ; 115: 101964, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33965515

RESUMO

BACKGROUND: Acrylamide (ACR) is a well-proven neurotoxin and potential food carcinogen in humans and rodent models. Silymarin (SIL) is a flavonoid mixture isolated from seeds, leaves, and fruits of Silymarin marianum (milk thistle) that possesses a free-radical scavenging effect. OBJECTIVE: In this work, the primary focus was to investigate the efficacy of SIL to mitigate ACR-induced subacute neurotoxic effects and oxidative changes in rat cerebellum. METHODS: Adult male rats were treated intraperitoneally with ACR (50 mg/kg) with or without SIL (160 mg/kg). The neuropathology and biochemical parameters viz. lipid peroxidation (measured as levels of malondialdehyde or MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), serotonin (5-hydroxytryptamine; 5-HT), dopamine (DA), and cathepsin D (CTSD) in the cerebellum have been evaluated. RESULTS: The data showed that ACR induced redox disruptions as measured by increased MDA levels and inhibition of CAT, SOD, and GPx antioxidant enzyme activities. Besides, cerebellar monoamine neurotransmitters, 5-HT and DA, were depleted in ACR-treated rats. Furthermore, ACR administration caused a significant elevation of CTSD activity, indicating that ACR could trigger apoptosis or apoptosis-like death. At the tissue level, cerebellar cortex sections from ACR-treated animals were characterized by severe neuronal damage. The administration of SIL to ACR-treated rats remarkably alleviated all the aforementioned ACR-induced effects. CONCLUSION: SIL has a potent therapeutic effect against ACR-induced cerebellar neurotoxicity in experimental rats via the attenuation of oxidative/antioxidative responses and the inhibition of CTSD-activity.


Assuntos
Acrilamida/toxicidade , Antioxidantes/farmacologia , Cerebelo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Silimarina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Cerebelo/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
7.
Immunology ; 164(1): 90-105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33880776

RESUMO

Intravenous immunoglobulin (IVIG) is an established treatment for numerous autoimmune conditions. Although Fc fragments derived from IVIG have shown efficacy in controlling immune thrombocytopenia in children, the mechanisms of action are unclear and controversial. The aim of this study was to dissect IVIG effector mechanisms using further adapted Fc fragments on demyelination in an ex vivo model of the central nervous system-immune interface. Using organotypic cerebellar slice cultures (OSCs) from transgenic mice, we induced extensive immune-mediated demyelination and oligodendrocyte loss with an antibody specific for myelin oligodendrocyte glycoprotein (MOG) and complement. Protective effects of adapted Fc fragments were assessed by live imaging of green fluorescent protein expression, immunohistochemistry and confocal microscopy. Cysteine- and glycan-adapted Fc fragments protected OSC from demyelination in a dose-dependent manner where equimolar concentrations of either IVIG or control Fc were ineffective. The protective effects of the adapted Fc fragments are partly attributed to interference with complement-mediated oligodendroglia damage. Transcriptome analysis ruled out signatures associated with inflammatory or innate immune responses. Taken together, our findings show that recombinant biomimetics can be made that are at least two hundred-fold more effective than IVIG in controlling demyelination by anti-MOG antibodies.


Assuntos
Autoanticorpos/uso terapêutico , Cerebelo/patologia , Doenças Desmielinizantes/terapia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G/uso terapêutico , Oligodendroglia/patologia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Autoanticorpos/genética , Cerebelo/efeitos dos fármacos , Doenças Desmielinizantes/imunologia , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoglobulinas Intravenosas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Oligodendroglia/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Proteínas Recombinantes de Fusão/genética
8.
PLoS One ; 16(3): e0247573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684143

RESUMO

Kola nut (from Cola nitida) is popular in Nigeria and West Africa and is commonly consumed by pregnant women during the first trimester to alleviate morning sickness and dizziness. There is, however, a dearth of information on its effects on the developing brain. This study, therefore, investigated the potential effects of kola nut on the structure of the developing neonatal and juvenile cerebellum in the rat. Pregnant Wistar rats were administered water (as control) or crude (aqueous) kola nut extract at 400, 600, and 800 mg/kg body weight orally, from pregnancy to day 21 after birth. On postnatal days 1, 7, 14, 21 and 28, the pups were weighed, anaesthetised, sacrificed and perfused with neutral buffered formalin. Their brains were dissected out, weighed and the cerebellum preserved in 10% buffered formalin. Paraffin sections of the cerebellum were stained with haematoxylin and eosin for cerebellar cytoarchitecture, cresyl violet stain for Purkinje cell count, Glial Fibrillary Acidic Protein (GFAP) immunohistochemistry (IHC) for estimation of gliosis, and B-cell lymphoma 2 (Bcl-2) IHC for apoptosis induction. The kola nut-treated rats exhibited initial reduction in body and brain weights, persistent external granular layer, increased molecular layer thickness, and loss of Bergmann glia. Their Purkinje cells showed reduction in density, loss of dendrites and multiple layering, and their white matter showed neurodegeneration (spongiosis) and GFAP and Bcl-2 over-expression, with evidence of reactive astrogliosis. This study, therefore, demonstrates that kola nut, administered repeatedly at certain doses to pregnant dams, could disrupt normal postnatal cerebellar development in their pups. The findings suggest potential deleterious effects of excessive kola nut consumption on human brain and thus warrant further studies to understand the wider implications for human brain development.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cola/efeitos adversos , Extratos Vegetais/efeitos adversos , Administração Oral , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cerebelo/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Nigéria , Extratos Vegetais/administração & dosagem , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos , Ratos Wistar
9.
J Neuroinflammation ; 18(1): 39, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531028

RESUMO

BACKGROUND: Bacterial meningitis is a fatal disease with a mortality up to 30% and neurological sequelae in one fourth of survivors. Available vaccines do not fully protect against this lethal disease. Here, we report the protective effect of synthetic oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG ODN) against the most frequent form of bacterial meningitis caused by Streptococcus pneumoniae. METHODS: Three days prior to the induction of meningitis by intracerebral injection of S. pneumoniae D39, wild-type and Toll-like receptor (TLR9)-/- mice received an intraperitoneal injection of 100 µg CpG ODN or vehicle. To render mice neutropenic, anti-Ly-6G monoclonal antibody was daily administrated starting 4 days before infection with a total of 7 injections. Kaplan-Meier survival analyses and bacteriological studies, in which mice were sacrificed 24 h and 36 h after infection, were performed. RESULTS: Pre-treatment with 100 µg CpG ODN prolonged survival of immunocompetent and neutropenic wild-type mice but not of TLR9-/- mice. There was a trend towards lower mortality in CpG ODN-treated immunocompetent and neutropenic wild-type mice. CpG ODN caused an increase of IL-12/IL-23p40 levels in the spleen and serum in uninfected animals. The effects of CpG ODN on bacterial concentrations and development of clinical symptoms were associated with an increased number of microglia in the CNS during the early phase of infection. Elevated concentrations of IL-12/IL-23p40 and MIP-1α correlated with lower bacterial concentrations in the blood and spleen during infection. CONCLUSIONS: Pre-conditioning with CpG ODN strengthened the resistance of neutropenic and immunocompetent mice against S. pneumoniae meningitis in the presence of TLR9. Administration of CpG ODN decreased bacterial burden in the cerebellum and reduced the degree of bacteremia. Systemic administration of CpG ODN may help to prevent or slow the progression to sepsis of bacterial CNS infections in healthy and immunocompromised individuals even after direct inoculation of bacteria into the intracranial compartments, which can occur after sinusitis, mastoiditis, open head trauma, and surgery, including placement of an external ventricular drain.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Imunocompetência/imunologia , Hospedeiro Imunocomprometido/imunologia , Meningite Pneumocócica/imunologia , Neutropenia/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/metabolismo , Feminino , Imunocompetência/efeitos dos fármacos , Hospedeiro Imunocomprometido/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Meningite Pneumocócica/tratamento farmacológico , Meningite Pneumocócica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutropenia/metabolismo , Neutropenia/prevenção & controle , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Streptococcus pneumoniae , Resultado do Tratamento
10.
Int. j. morphol ; 39(1): 318-326, feb. 2021. ilus
Artigo em Inglês | LILACS | ID: biblio-1385294

RESUMO

SUMMARY: In this study the consequences of prenatal exposure to tobacco smokes on the histo-morphological changes of cerebellum was assessed by comparing the smoker mice to the nonsmoker mice. A total of 30 pregnant cd-1 mice were divided into three groups of 10 mice each and with two replicates per group (5 mice each). Following acclimation for five days, the mice were placed in a special modified smoking machine for 2 hours per day over a two- and three-week period for group two and group three, respectively. Group one was considered as a control group. Mice in the control group were exposed simultaneously to fresh air from the room, while those in the treatment groups were exposed to tobacco smoke from six commercial filter cigarettes, containing 0.8 mg of nicotine, 10 mg of tar, and 10 mg of carbon monoxide, for three 1-hour exposure periods every day for three weeks. The mice in the control group were exposed to room air for three 1-hour periods every day for the same period of three weeks. The results from this study showed a correlation between maternal smoking and histological changes in Neuron purkinjense (Purkinje cells) of the cerebellum. They also showed that prenatal smoking period may have caused more damage in the histology and structure of Neuron purkinjense in some juvenile mice. An increased incidence of morphology damage of the cerebellum's Neuron purkinjense' structures was also observed in fetuses with prolonged exposure to tobacco smoking. Exposure of in utero maternal smoking may interfere with brain biological development parameters, giving rise to structural abnormalities of the cerebellum. This study concluded that tobacco smoke exposure to pregnant mice may affect neurodevelopment which may induce behavioural changes as a result of reduced cerebellar size and function.


RESUMEN: Se evaluaron los efectos producidos por la exposición prenatal al humo de tabaco en ratones expuestos y no expuestos y los cambios histomorfológicos observados en el cerebelo en ambos grupos. Un total de 30 ratones cd-1 preñados se dividieron en tres grupos de 10 ratones cada uno y con dos réplicas por grupo (5 ratones cada uno). Después de la aclimatación durante cinco días, los ratones se colocaron en una máquina de fumar modificada, especial durante 2 horas al día, durante un período de dos y tres semanas para el grupo dos y el grupo tres, respectivamente. El grupo uno se consideró como grupo control. Los ratones del grupo de control fueron expuestos simultáneamente al aire limpio de la habitación, mientras que los grupos de tratamiento fueron expuestos al humo de tabaco de seis cigarrillos comerciales, que contenían 0,8 mg de nicotina, 10 mg de alquitrán y 10 mg de monóxido de carbono. durante tres períodos de 1 hora diariamente, durante tres semanas. Los ratones del grupo de control se expusieron al aire ambiente durante tres períodos de 1 hora todos los días durante el mismo período de tres semanas. Los resultados de este estudio mostraron una correlación entre el tabaquismo materno y los cambios histológicos en las neuronas purkinjenses (células de Purkinje). Se observó además que el período de tabaquismo prenatal puede haber causado mayor daño en la histología y estructura de las neuronas purkinjenses en algunos ratones jóvenes. También se observó una mayor incidencia de daño morfológico de las estructuras de las neuronas purkinjenses del cerebelo en fetos con exposición prolongada al tabaquismo. La exposición al tabaquismo materno en el útero puede interferir con los parámetros de desarrollo biológico del cerebro, dando lugar a anomalías estructurales del cerebelo. Este estudio concluyó que la exposición al humo del tabaco en ratones preñados puede afectar el desarrollo neurológico, lo que puede inducir cambios de comportamiento como resultado de la reducción del tamaño y la función del cerebelo.


Assuntos
Animais , Feminino , Gravidez , Poluição por Fumaça de Tabaco/efeitos adversos , Cerebelo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Células de Purkinje/efeitos dos fármacos , Exposição Materna/efeitos adversos
11.
Neurosci Lett ; 746: 135648, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33444672

RESUMO

Vitronectin, an extracellular matrix protein, controls the differentiation of cerebellar granule cell precursors (CGCPs) via αvß5 integrin, particularly in the initial stage of differentiation to granule cells. In this study, we determined whether vitronectin regulates axon specification in this initial differentiation stage of CGCPs. First, we analyzed whether vitronectin deficiency, ß5 integrin knockdown (KD), and ß5 integrin overexpression affect axon specification of primary cultured CGCPs. Vitronectin deficiency and ß5 integrin KD inhibited axon formation, while vitronectin administrated- and ß5 integrin overexpressed-neurons formed multiple axons. Moreover, KD of ß5 integrin suppressed vitronectin-induced multiple axon formation. These findings indicate that vitronectin contributes to regulating axon specification via αvß5 integrin in CGCPs. Next, we determined the signaling pathway involved in regulating vitronectin-induced axon specification. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited vitronectin-induced multiple axon specification, and lithium chloride, an inhibitor of glyocogen synthase kinase 3 beta (GSK3ß), attenuated the inhibitory effect of vitronectin-KO and ß5 integrin KD on the specification of CGCPs. In addition, vitronectin induced the phosphorylation of protein kinase B (Akt) and GSK3ß in neuroblastoma Neuro2a cells. Taken together, our results indicate that vitronectin plays an important factor in axon formation process in CGCPs via a ß5 integrin/PI3K/GSK3ß pathway.


Assuntos
Axônios/metabolismo , Diferenciação Celular/fisiologia , Cerebelo/metabolismo , Células-Tronco Neurais/metabolismo , Receptores de Vitronectina/metabolismo , Vitronectina/metabolismo , Animais , Axônios/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Gravidez , Vitronectina/farmacologia
12.
Biomolecules ; 11(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513819

RESUMO

High-fat diet (HFD) is a major problem causing neuronal damage. Thymoquinone (TQ) could regulate oxidative stress and the inflammatory process. Hence, the present study elucidated the significant role of TQ on oxidative stress, inflammation, as well as morphological changes in the cerebellum of rats with HFD. Rats were divided into three groups as (1) control, (2) saturated HFD for eight weeks and (3) HFD supplementation (four weeks) followed by TQ 300 mg/kg/day treated (four weeks). After treatment, blood samples were collected to measure oxidative stress markers glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and inflammatory cytokines. Furthermore, neuronal morphological changes were also observed in the cerebellum of the rats. HFD rats show higher body weight (286.5 ± 7.4 g) as compared with the control group (224.67 ± 1.78 g). TQ treatment significantly (p < 0.05) lowered the body weight (225.83 ± 13.15 g). TQ produced a significant (p < 0.05) reduction in cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The antioxidative enzymes significantly reduced in HFD rats (GSH, 1.46 ± 0.36 mol/L and SOD, 99.13 ± 5.41 µmol/mL) as compared with the control group (GSH, 6.25 ± 0.36 mol/L and SOD, 159.67 ± 10.67 µmol/mL). MDA was increased significantly in HFD rats (2.05 ± 0.25 nmol/L) compared to the control group (0.695 ± 0.11 nmol/L). Surprisingly, treatment with TQ could improve the level of GSH, MDA, and SOD. TQ treatment significantly (p < 0.05) reduced the inflammatory markers as compared with HFD alone. TQ treatment minimizes neuronal damage as well as reduces inflammation and improves antioxidant enzymes. TQ can be considered as a promising agent in preventing the neuronal morphological changes in the cerebellum of obese populations.


Assuntos
Benzoquinonas/farmacologia , Cerebelo/efeitos dos fármacos , Dieta Hiperlipídica , Inflamação/metabolismo , Neurônios/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Peso Corporal , Encéfalo , Cerebelo/metabolismo , Citocinas/metabolismo , Suplementos Nutricionais , Glutationa/metabolismo , Malondialdeído/metabolismo , Neurônios/metabolismo , Obesidade , Sobrepeso , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
13.
Reprod Toxicol ; 100: 109-119, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497742

RESUMO

Primary cultures of cerebellar granule neurons (CGNs) derived from chicken embryos were used to explore the effects on developmental neurotoxicity by a complex defined mixture of persistent organic pollutants (POPs). Its chemical composition and concentrations were based on blood levels in the Norwegian/Scandinavian population. Perfluorooctane sulfonic acid (PFOS) alone, its most abundant compound was also evaluated. Different stages of CGNs maturation, between day in vitro (DIV) 1, 3, and 5 were exposed to the POP mixture, or PFOS alone. Their combination with glutamate, an excitatory endogenous neurotransmitter important in neurodevelopment, also known to cause excitotoxicity was evaluated. Outcomes with the mixture at 500x blood levels were compared to PFOS at its corresponding concentration of 20 µM. The POP mixture reduced tetrazolium salt (MTT) conversion at earlier stages of maturation, compared to PFOS alone. Glutamate-induced excitotoxicity was enhanced above the level of that induced by glutamate alone, especially in mature CGNs at DIV5. Glutathione (GSH) concentrations seemed to set the level of sensitivity for the toxic insults from exposures to the pollutants. The role of N-methyl-D-aspartate receptor (NMDA-R) mediated calcium influx in pollutant exposures was investigated using the non-competitive and competitive receptor antagonists MK-801 and CGP 39551. Observations indicate a calcium-independent, but still NMDA-R dependent mechanism in the absence of glutamate, and a calcium- and NMDA-R dependent one in the presence of glutamate. The outcomes for the POP mixture cannot be explained by PFOS alone, indicating that other chemicals in the mixture contribute its overall effect.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Cerebelo/embriologia , Fluorocarbonos/toxicidade , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Poluentes Orgânicos Persistentes/toxicidade , Ácidos Alcanossulfônicos/sangue , Animais , Cálcio/metabolismo , Cerebelo/efeitos dos fármacos , Embrião de Galinha , Galinhas , Fluorocarbonos/sangue , Glutationa/análise , Humanos , Neurônios/química , Neurônios/metabolismo , Poluentes Orgânicos Persistentes/sangue , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Acta Histochem ; 123(2): 151682, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33465564

RESUMO

Methotrexate (MTX) has been used for treatment of autoimmune diseases, inflammatory disorders as rheumatic arthritis, and different types of cancers. However, it has shown adverse effects on vital organs. The current study was conducted to investigate the toxic effect of MTX on the hippocampus, cerebellum, liver and kidneys of adult male albino rats. MTX was injected weekly at 5 mg/kg body weight via I/P injection for 6 weeks. At the end of the experiment, histopathological, immunohistochemical and biochemical evaluation were performed on the hippocampus, cerebellum, liver, and kidney tissues of the sacrificed rats. We observed that methotrexate induced neural tissue damage in the hippocampus and cerebellum, degeneration of hepatocytes, congestion of the central vein and blood sinusoids of the liver, distortion in the renal corpuscles and necrosis of the renal tubule. Immunohistochemical findings revealed strong positive expression of Caspase-3, PCNA and GFAP. Biochemical studies revealed significant elevation in the serum levels of AST and ALT, in addition to high serum concentrations of creatinine and urea. Also, MTX injection increased MDA, while it decreased GSH, SOD and AChE levels. We conclude the ability of MTX to induce oxidative stress that results into apoptosis and tissue injury, leading to neurotoxicity, hepatotoxicity, and nephrotoxicity.


Assuntos
Cerebelo/metabolismo , Hipocampo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Metotrexato/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Imuno-Histoquímica , Técnicas In Vitro , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
15.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466390

RESUMO

Niemann-Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-ß-CD in Npc1 gene-deficient (Npc1-/-) mice. Intracerebroventricular HP-ß-CD inhibited cerebellar Purkinje cell damage in Npc1-/- mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1-/- mice. Repeated doses of intracerebroventricular HP-ß-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1-/- mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-ß-CD treatment.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Cerebelo/efeitos dos fármacos , Proteínas do Olho/metabolismo , Fígado/efeitos dos fármacos , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Animais , Biomarcadores/metabolismo , Cerebelo/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Glicoproteínas/metabolismo , Infusões Intraventriculares , Fígado/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo
16.
J Sci Food Agric ; 101(2): 497-504, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32648261

RESUMO

BACKGROUND: Oxidative stress has been implicated in the pathogenesis and progression of diabetes mellitus. Both can damage the brain. Mango and its by-products are sources of bioactive compounds with antioxidant properties. We hypothesized that mango cv. 'Ataulfo' peel and pulp mitigate oxidative stress in the brain of streptozotocin-induced diabetic rats. RESULTS: Twenty-four male Wistar rats were divided into four groups: control, untreated diabetic (UD), diabetic treated with a mango-supplemented diet (MTD), and diabetic pretreated with a mango-supplemented diet (MPD). The rats were fed the different diets for 4 weeks after diabetes induction (MTD), or 2 weeks before and 4 weeks after induction (MPD). After the intervention, serum and brain (cerebellum and cortex) were collected to evaluate gene expression, enzyme activity, and redox biomarkers. Superoxide dismutase 2 (SOD2) expression increased in the cortex of the MTD group, whereas glutathione-S-transferase p1 (GSTp1) expression was higher in the cortex of the MTD group, and cortex and cerebellum of the MPD group. SOD1 activity was higher in the cerebellum and cortex of all diabetic groups, whereas GST activity increased in the cerebellum and cortex of the MPD group. Lipid peroxidation increased in the cerebellum and cortex of the UD group; however, a mango-supplemented diet prevented this increase in both regions, while also mitigating polyphagia and weight loss, and maintaining stable glycemia in diabetic rats. CONCLUSION: We propose that mango exerts potent neuroprotective properties against diabetes-induced oxidative stress. It can be an alternative to prevent and treat biochemical alterations caused by diabetes. © 2020 Society of Chemical Industry.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Mangifera/química , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Frutas/química , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Estreptozocina , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
17.
Addict Biol ; 26(3): e12931, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32575152

RESUMO

Cannabis is the most frequently used illicit drug in the world. Cross-sectional neuroimaging studies have revealed that chronic cannabis exposure and the development of cannabis use disorders may affect cerebllar morphology. However, cross-sectional studies cannot make a conclusive distinction between causes and consequences, and there is a lack of longitudinal neuroimaging studies. In the current study, we used longitudinal neuroimaging data to explore whether persistent cannabis use and higher levels of cannabis exposure in young adults are related to cerebellar thickness alterations. Twenty heavy cannabis users (CBs) and 22 non-cannabis-using controls (HCs) completed a comprehensive psychological assessment and a T1-structural MRI scan at baseline and a 3-year follow-up. Except for lobuleVIIB, all cerebellar subregions showed significant effects of age in both the CB and HC groups. Both VI and CrusI had higher rates of increase in CBs than in HCs. In addition, we examined the relationship between changes in cerebellar thickness and cannabis use characteristics. We found that alterations in lobule VI and CrusI were related to the age at onset first cannabis use but not the age at onset frequent cannabis use. The changes in lobule VI and CrusI were associated with the CUDIT score, even when controlling for the AUDIT score. The results indicated that an increased rate of cerebellar thickness is a risk factor for heavy cannabis use in early adulthood. Cannabis use affects the cerebellar structure, and monitoring cerebellar structural alterations that could be used as biomarkers may help guide the development of clinical tools.


Assuntos
Cannabis/efeitos adversos , Cerebelo/efeitos dos fármacos , Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idade de Início , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Fumar Maconha , Adulto Jovem
18.
Environ Toxicol ; 36(4): 491-505, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33219756

RESUMO

Valproic acid (VPA)-a short branched chain fatty acid (BCFA), is widely recognized as an anticonvulsant and a mood-stabilizing drug, but various adverse effects of VPA have also been investigated. However, the impact of BCFAs aggregation on brain cells, in the pathogenesis of neurodegeneration remains elusive. The objective of this study is to understand the cellular mechanisms underlying VPA-induced neuronal cell death mediated by oxidative stress, and the neuroprotective role of exogenous melatonin treatment on VPA-induced cell death. Neurotoxicity of VPA and protective role exerted by melatonin were assessed in vitro in SH-SY5Y cells and in vivo in the cerebral cortex and cerebellum regions of Wistar rat brain. The results show that melatonin pre-treatment protects the cells from VPA-induced toxicity by exerting an anti-apoptotic and anti-inflammatory effect by regulating apoptotic proteins and pro-inflammatory cytokines. The findings of the present study emphasize novel insights of melatonin as a supplement for the prevention and treatment of neuronal dysfunction induced by VPA.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácidos Graxos/metabolismo , Melatonina/farmacologia , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/prevenção & controle , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Ácido Valproico/metabolismo , Ácido Valproico/toxicidade
19.
J Chem Neuroanat ; 111: 101892, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220428

RESUMO

Parkinson disease is the second most common neurodegenerative disease affecting elderly patients. It occurs due to the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). We continue our work in this model focusing on other brain areas affected with this disorder; cerebral cortex and cerebellum (areas other than substantia nigra) for better understanding the motor and behavior effect of the Parkinson disease as a forward steep for its treatment and medical control. This work aims to evaluate the therapeutic effect of stem cell-conditioned medium in the Parkinsonism model. In this study, Parkinsonism model was induced in rats by daily subcutaneous injection of 0.5 mg/Kg of rotenone for 28 days. Thirty rats were divided randomly into 3 groups; control, Parkinson, and conditioned medium (CM) treated groups. Cerebral Cortex and Cerebellum were obtained for histological, immunohistochemical and biochemical studies. In the Parkinsonism group, marked histological changes were observed. These findings were nearly ameliorated in CM treated group as confirmed by the biochemical, histological, and immunohistochemical (anti-alpha synculein, anti GFAP and anti nestin) studies. It could be concluded that CM had a good therapeutic effect on Parkinsonism induced damage in both the cerebral cortex and cerebellum.


Assuntos
Cerebelo/patologia , Córtex Cerebral/patologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais , Atividade Motora/efeitos dos fármacos , Doença de Parkinson Secundária/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Rotenona
20.
Neurotoxicology ; 82: 69-81, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197482

RESUMO

PSA-NCAM is a molecule of therapeutic interest for its key role in promoting neuritogenesis and synaptic plasticity. The current study was aimed to investigate the neuroregenerative potential of 5-nonyloxytryptamine (5-NOT) as PSA mimetic compound against glutamate induced excitotoxicity. 2D and 3D cultures of cerebellar neurons challenged with glutamate were used to ascertain the effect of 5-NOT on neurite outgrowth, migration and expression of neuronal plasticity markers. Glutamate excitotoxicity is one of the major underlying pathological factor responsible for neurodegeneration in various neurological disorders such as trauma, stroke, ischemia, epilepsy and neurodegenerative diseases.5-NOT treatment was observed to promote axonal growth and defasiculation in glutamate challenged neurons as well as promoted the migration of cerebellar neurons in both wound scratched area and cerebellar explant cultures. Further, 5-NOT treatment upregulated the expression of synaptic plasticity and cell survival pathway proteins which showed reduced expression after glutamate induced excitotoxicity. Thus, this preliminary data reveals thatPSA-mimetic,5-NOT may prove to be a potential neuroprotective candidate for neurodegenerative diseases.


Assuntos
Cerebelo/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Molécula L1 de Adesão de Célula Nervosa/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácidos Siálicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Células Cultivadas , Neuroglia/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA